
Procedural Environment and
Architecture Generation in

Windforge

Screenshot from Windforge

What is Windforge

● A 2D action building block RPG

● Embraces freedom and creativity

● Almost everything in the world can be
created and destroyed

● Creating this world by hand would be very
tedious and time consuming.

What is Windforge

Almost the entire world is procedurally
generated

Windforge: Procedural Generation

Some benefits of procedural generation:
● Can create large sandbox worlds with

ease

● Easy to balance and tweak the world

● Great replay value
○ (even for the developers!)

● Emergent results are possible

Windforge: Procedural Generation

Some drawbacks / challenges:
● Can be unpredictable

● Testing / debugging is challenging

● Hard to compete to compete with real
people.

Windforge: Procedural Generation

Things that are procedural in Windforge:
● Area definition and landmark placement

● World areas

● Dungeons

● Enemy placement and spawning

Windforge: Procedural Generation

World Area
Generation

The World Map

Windforge: World Generation

● Each grid cell of the world map
corresponds with a world area.

● The world area seed is generated from the
coordinates of the world area.

● Makes heavy use of noise maps.

World Area Generation

1. Generate coarse grid noise map
2. Determine island cells
3. Create island stamps
4. Create caves
5. Place different block types
6. Place dungeons
7. Place objects

World Area Generation

 Processed Perlin Noise

Step 1: Generate Noise Map

 Threshold height + depth first search

Step 2: Determine Islands

 The noise map gives a coarse grid

Step 3: Place Island Stamps

 Place island stamps with random offsets in each cell

Step 3: Place Island Stamps

 Repeat for all island cells

Step 3: Place Island Stamps

 Island stamps provide the island visuals and specify
where to place the blocks

Step 3: Place Island Stamps

 Use noise maps to create cave chambers

Step 4: Add Caves

 Place cave tunnels using noise map
gradients

Step 4: Add Caves

 Place dirt using 1D noise

Step 5: Place Blocks

 Place ore cluster lumps using mini noise maps

Step 5: Place Blocks

This step will be described in more detail
later.

Step 6: Place Dungeons

1. Determine all horizontal surfaces

2. Repeat until you place enough objects.
a. Choose a random object to place
b. Find a random horizontal surface to place it on.
c. Subtract from this surface.

Step 7: Place objects

(Example object placement)

Step 7: Place objects

Final Result

Dungeon
 Generation

● Divide and conquer approach

● Lots of steps, but they are fairly simple in
isolation

● Boundaries are known before the dungeon
is generated.

● Flexible and easy to extend

Dungeon Generation

1. Calculate Bounding Box
2. Split into regions
3. Skim off some perimeter regions
4. Place connections
5. Assign room types
6. Make adjustments
7. Generate

Dungeon Generation

Choose an island

Step 1: Calculate Bounding Box

Create a random box, within size and aspect ratio
constraints.

Step 1: Calculate Bounding Box

● Recursively divide up the space.

● Currently using random axis aligned
binary splits.

● Stop splitting regions when they will
become too small. (or meet other criteria)

Step 2: Split Into Regions

Recursive Splitting: Depth 1

Splitting Regions Example

Recursive Splitting: Depth 2

Splitting Regions Example

Recursive Splitting: Depth 3

Splitting Regions Example

Recursive Splitting: Depth 4...

Splitting Regions Example

...and so on. Stop splitting when regions are too small,
etc.

Splitting Regions Example

There are different ways to approach
splitting:
● Split along a random axis.
● Always split the shorter axis.
● Always split the longer axis.
● Hybrid approaches.

Splitting Approaches

Split along a random axis

Splitting Approaches

Split along the shortest axis

Splitting Approaches

Always split the longest axis

Splitting Approaches

Weighted selection of the last three

Splitting Approaches

Weighted selection and early termination

Splitting Approaches

● Don't want every dungeon to be a
rectangle.

● Remove a random percentage of
perimeter regions.

● Deal with floating regions later.

Step 3: Skim Perimeter Regions

(Perimeter Skimming Example)

Step 3: Skim Perimeter Regions

● Track possible connections with each split

● This helps to make a graph that a
computer can easily traverse.

● Currently randomly traversing the graph
and inserting travel connections along the
way.

Step 4: Place Connections

Each region is a node

Example Connection Graph

The Connection Information

Example Connection Graph

The Connection Graph

Example Connection Graph

Random traversal to place connections

Example Connection Graph

Delete unvisited regions

Example Connection Graph

Place random connection types

Example Connection Graph

● The region type specifies how the region
will be generated.

● Example region types:
○ Treasure room
○ Boss room
○ Entrance room
○ Hub region
○ Trap region
○ etc.

Step 5: Assign Region Types

● We use a variety of methods to assign
region types

● We also assign them in their order of
importance.

Step 5: Assign Region Types

Place the boss treasure room in a terminal region, a far
distance away from the entrance.

Example Region Assignment
Rules

Place the boss room near the treasure room so that you
must travel through the region

Example Region Assignment
Rules

Assign trap rooms to terminal regions with ceiling
connections.

Example Region Assignment
Rules

(More example region assignments)

Example Region Assignment
Rules

● Adjust some of the connections to better
match their region types.

● For example:
○ Place empty connections between adjacent boss

rooms.
○ Place trap doors with trap regions.
○ Place doors on boss treasure regions.

Step 6: Make Adjustments

● Adjust region types if necessary.

● Make any other corrections that might be
necessary.

Step 6: Make Adjustments

1. Generate the walls / connections

2. Generate the regions

3. Create the entrance tunnel if necessary

4. Apply random damage to blocks

Step 7: Generate

● We do the following here:
○ Background pattern generation
○ Object placement
○ Platform placement

● Manage the complexity of this by dividing
into sub-regions.
○ This is very similar to the region splitting.
○ Also similar to shape grammars

Region Generation

Each box on the wall is a sub-region

Sub-Region Example

Object placement was based on sub-regions

Sub-Region Example

Platform placement as well

Sub-Region Example

More Sub-Region Examples

(Before Random Damage)

Random Dungeon Damage

(After Random Damage)

Random Dungeon Damage

A lot of variety can be achieved by:
● Adjusting parameters

● New types of region removal

● New types of region connection traversal

● Hierarchies of generation parameters

● and more!

Adding Variety

Architecture Examples

Architecture Examples

Architecture Examples

Architecture Examples

Architecture Examples

Architecture Examples

Architecture Examples

Enemy
Placement

The placement algorithm needs to:
● Support procedural environments, that can

be changed by the player.

● Support a wide range of enemy sizes.

● As fast as possible

Enemy Placement: Requirements

● It was the easiest to control the
experience by dynamically spawning most
of the enemies.

● The current system has a dynamically
changing goal danger level

● It will add enemies until the goal danger
level is reached

Enemy Placement: Solution

● The types of enemies placed depends on
the situation the player is in. (in ruins,
flying, etc.)

● Enemies are also dynamically removed if
they aren't needed.

Enemy Placement: Solution

Randomly place in a zone surrounding the player's view

Enemy Placement: Solution

Try once a frame until the enemy is placed.

Enemy Placement: Solution

Similar for ground enemies:
● Choose a random point in the air

● Ray cast down to the ground

● If the ray hits the ground, check if the
collision area is suitable

Enemy Placement: Solution

Lessons
Learned

○ It’s quite possible that players will see bugs that you
never will.

○ Try to implement this as soon as it makes sense.

○ Make sure you log your generation seed and other
parameters.

○ Some errors are hard to detect.

Automated Testing = Important

● Author control vs emergent results

● Can be hard to guarantee that a level will
be perfect.
○ Gameplay can be designed to make the

experience more robust.

● Procedural / designer hybrids can work
really well.

Random Notes

● Noise maps are really handy for organic
things

● Recursive subdivision is nice for
architecture

● Try to keep things simple and organized.
○ The complexity grows really fast!

Things to Remember

Evan Hahn

Email: evan.hahn@snowedin.ca

Twitter: @ehahnda

Web: snowedin.ca

Contact Info

mailto:evan.hahn@snowedin.ca

? ?Questions ?

