Procedural Environment and
Architecture Generation in
Windforge




What is Windforge

Screenshot from Windforge




What is Windforge

- I
e A 2D action building block RPG

e Embraces freedom and creativity

e Almost everything in the world can be
created and destroyed

e Creating this world by hand would be very
tedious and time consuming.




Windforge: Procedural Generation
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Almost the entire world is procedurally
generated




Windforge: Procedural Generation
]

Some benefits of procedural generation:

e Can create large sandbox worlds with
ease

e Easy to balance and tweak the world

e Great replay value
o (even for the developers!)

e Emergent results are possible




Windforge: Procedural Generation
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Some drawbacks / challenges:
e Can be unpredictable

e Testing / debugging is challenging

e Hard to compete to compete with real
people.




Windforge: Procedural Generation
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Things that are procedural in Windforge:
e Area definition and landmark placement

e \WNorld areas

e Dungeons

e Enemy placement and spawning




World Area
Generation




Windforge: World Generation
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The World Map




World Area Generation
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e Each grid cell of the world map
corresponds with a world area.

e The world area seed is generated from the
coordinates of the world area.

e Makes heavy use of noise maps.




World Area Generation
Y

. Generate coarse grid noise map
. Determine island cells

. Create island stamps

. Create caves

Place different block types
Place dungeons

Place objects
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Step 1: Generate Noise Map

Processed Perlin Noise




Step 2: Determine Islands
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Threshold height + depth first search




Step 3: Place Island Stamps

The noise map gives a coarse grid




Step 3: Place Island Stamps

Place island stamps with random offsets in each cell




Step 3: Place Island Stamps
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Repeat for all island cells




Step 3: Place Island Stamps

Island stamps provide the island visuals and specify
where to place the blocks




Step 4: Add Caves

Use noise maps to create cave chambers




Step 4: Add Caves
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Place cave tunnels using noise map
gradients




Step 5: Place Blocks

Place dirt using 1D noise




Step 5: Place Blocks

Place ore cluster lumps using mini noise maps




Step 6: Place Dungeons
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This step will be described in more detail
later.




Step 7: Place objects

1. Determine all horizontal surfaces

2. Repeat until you place enough objects.
a. Choose a random object to place
b. Find a random horizontal surface to place it on.
c. Subtract from this surface.




Step 7: Place objects
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(Example object placement)




Final Result
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Dungeon
Generation




Dungeon Generation
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e Divide and conquer approach

e Lots of steps, but they are fairly simple in
Isolation

e Boundaries are known before the dungeon
IS generated.

e Flexible and easy to extend




Dungeon Generation
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Calculate Bounding Box

Split into regions

Skim off some perimeter regions
Place connections

Assign room types

Make adjustments

Generate
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Step 1: Calculate Bounding Box

Choose an island




Step 1: Calculate Bounding Box
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Create a random box, within size and aspect ratio
constraints.




Step 2: Split Into Regions

e Recursively divide up the space.

e Currently using random axis aligned
binary splits.

e Stop splitting regions when they will
become too small. (or meet other criteria)




Splitting Regions Example
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Recursive Splitting: Depth 1




Splitting Regions Example
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Recursive Splitting: Depth 2




Example

Regions

itting

Spl

Depth 3

Recursive Splitting




Splitting Regions Example

Recursive Splitting: Depth 4...




Splitting Regions Example

...and so on. Stop splitting when regions are too small,
etc.




Splitting Approaches

There are different ways to approach
splitting:

e Split along a random axis.

e Always split the shorter axis.

e Always split the longer axis.

e Hybrid approaches.



Splitting Approaches

Split along a random axis




Splitting Approaches

Split along the shortest axis




Splitting Approaches
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Always split the longest axis




Splitting Approaches

Weighted selection of the last three




Splitting Approaches

Weighted selection and early termination




Step 3: Skim Perimeter Regions

I N
e Don't want every dungeon to be a
rectangle.

e Remove a random percentage of
perimeter regions.

e Deal with floating regions later.
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(Perimeter Skimming Example)




Step 4: Place Connections
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e Track possible connections with each split

e This helps to make a graph that a
computer can easily traverse.

e Currently randomly traversing the graph
and inserting travel connections along the
way.




Example Connection Graph

Each region is a node




Example Connection Graph

The Connection Information




Example Connection Graph
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The Connection Graph




Example Connection Graph
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Random traversal to place connections




Example Connection Graph
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Delete unvisited regions




Example Connection Graph

Place random connection types




Step 5: Assign Region Types

e The region type specifies how the region
will be generated.

e Example region types:
o Treasure room

Boss room

Entrance room

Hub region

Trap region

etc.
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Step 5: Assign Region Types

1
e \We use a variety of methods to assign
region types

e \We also assign them in their order of
importance.




Example Region Assignment
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Y

= \ | Entrance r m

b3

Room =

Place the boss treasure room in a terminal region, a far
distance away from the entrance.




Example Region Assignment

Rules
Y
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Place the boss room near the treasure room so that you
must travel through the region




Example Region Assignment
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Assign trap rooms to terminal regions with ceiling
connections.




Example Region Assignment
Rules
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(More example region assignments)




Step 6: Make Adjustments

e Adjust some of the connections to better
match their region types.

e For example:

o Place empty connections between adjacent boss
rooms.

o Place trap doors with trap regions.

o Place doors on boss treasure regions.




Step 6: Make Adjustments

e Adjust region types if necessary.

e Make any other corrections that might be
necessary.




Step 7: Generate

1. Generate the walls / connections

2. Generate the regions

3. Create the entrance tunnel if necessary

4. Apply random damage to blocks




Region Generation
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e \We do the following here:
o Background pattern generation
o Object placement
o Platform placement

e Manage the complexity of this by dividing

into sub-regions.
o This is very similar to the region splitting.
o Also similar to shape grammars




Sub-Region Example
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Each box on the wall is a sub-region




Sub-Region Example
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Object placement was based on sub-regions




Sub-Region Example
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Platform placement as well




More Sub-Region Examples
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Random Dungeon Damage

(Before Random Damage)




Random Dungeon Damage
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(After Random Damage)




Adding Variety
! |
A lot of variety can be achieved by:

e Adjusting parameters

e New types of region removal

e New types of region connection traversal

e Hierarchies of generation parameters

e and more!




Architecture Examples




itecture Examples
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Architecture Examples
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rchitecture Examples
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tecture Examples
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Architecture Examples
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Architecture Examples
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Enemy
Placement




Enemy Placement: Requirements
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The placement algorithm needs to:

e Support procedural environments, that can
be changed by the player.

e Support a wide range of enemy sizes.

e As fast as possible




Enemy Placement: Solution
1 |

e |t was the easiest to control the
experience by dynamically spawning most
of the enemies.

e The current system has a dynamically
changing goal danger level

e |t will add enemies until the goal danger
level is reached




Enemy Placement: Solution
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e The types of enemies placed depends on
the situation the player is in. (in ruins,
flying, etc.)

e Enemies are also dynamically removed if
they aren't needed.




Enemy Placement: Solution

Randomly place in a zone surrounding the player's view




Enemy Placement: Solution

Try once a frame until the enemy is placed.




Enemy Placement: Solution
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Similar for ground enemies:
e Choose a random point in the air

e Ray cast down to the ground

e [f the ray hits the ground, check if the
collision area is suitable




Lessons
Learned




Automated Testing = Important
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o It's quite possible that players will see bugs that you
never will.

o Try to implement this as soon as it makes sense.

o Make sure you log your generation seed and other
parameters.

o Some errors are hard to detect.




Random Notes
Y

e Author control vs emergent results

e Can be hard to guarantee that a level will
be perfect.

o Gameplay can be designed to make the
experience more robust.

e Procedural / designer hybrids can work
really well.




Things to Remember
]

e Noise maps are really handy for organic
things

e Recursive subdivision is nice for
architecture

e Try to keep things simple and organized.
o The complexity grows really fast!




Contact Info
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Evan Hahn

Email: evan.hahn@snowedin.ca

Twitter: @ehahnda

Web: snowedin.ca
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Questions ?




