Procedural Environment and
Architecture Generation in
Windforge

What is Windforge

Screenshot from Windforge

What is Windforge

- I
e A 2D action building block RPG

e Embraces freedom and creativity

e Almost everything in the world can be
created and destroyed

e Creating this world by hand would be very
tedious and time consuming.

Windforge: Procedural Generation

I

|

| /
e
q

[

BIAALA0 T AL~

—— =

“*THE CORE

—

R s

Almost the entire world is procedurally
generated

Windforge: Procedural Generation
]

Some benefits of procedural generation:

e Can create large sandbox worlds with
ease

e Easy to balance and tweak the world

e Great replay value
o (even for the developers!)

e Emergent results are possible

Windforge: Procedural Generation
I D ——

Some drawbacks / challenges:
e Can be unpredictable

e Testing / debugging is challenging

e Hard to compete to compete with real
people.

Windforge: Procedural Generation
I D ——

Things that are procedural in Windforge:
e Area definition and landmark placement

e \WNorld areas

e Dungeons

e Enemy placement and spawning

World Area
Generation

Windforge: World Generation

WINDFORG! - e

The World Map

World Area Generation
Y

e Each grid cell of the world map
corresponds with a world area.

e The world area seed is generated from the
coordinates of the world area.

e Makes heavy use of noise maps.

World Area Generation
Y

. Generate coarse grid noise map
. Determine island cells

. Create island stamps

. Create caves

Place different block types
Place dungeons

Place objects

N oA WN

Step 1: Generate Noise Map

Processed Perlin Noise

Step 2: Determine Islands
I D -

ih“
»

b

Threshold height + depth first search

Step 3: Place Island Stamps

The noise map gives a coarse grid

Step 3: Place Island Stamps

Place island stamps with random offsets in each cell

Step 3: Place Island Stamps

lﬂMww‘l
Illﬁ%w‘ﬂ.
-(' lbu 4».4 H-
HBEes . -8E
HEEERCARE

Repeat for all island cells

Step 3: Place Island Stamps

Island stamps provide the island visuals and specify
where to place the blocks

Step 4: Add Caves

Use noise maps to create cave chambers

Step 4: Add Caves

5 P
- *"“
-

b

.

Place cave tunnels using noise map
gradients

Step 5: Place Blocks

Place dirt using 1D noise

Step 5: Place Blocks

Place ore cluster lumps using mini noise maps

Step 6: Place Dungeons
I D —

This step will be described in more detail
later.

Step 7: Place objects

1. Determine all horizontal surfaces

2. Repeat until you place enough objects.
a. Choose a random object to place
b. Find a random horizontal surface to place it on.
c. Subtract from this surface.

Step 7: Place objects

!
1

1) 4
A >)

PaRenoe

= A .~\' r"—"""
@ @ @@2-

T

(Example object placement)

Final Result

0% ¢
{48

Dungeon
Generation

Dungeon Generation
1 |

e Divide and conquer approach

e Lots of steps, but they are fairly simple in
Isolation

e Boundaries are known before the dungeon
IS generated.

e Flexible and easy to extend

Dungeon Generation
1 |

Calculate Bounding Box

Split into regions

Skim off some perimeter regions
Place connections

Assign room types

Make adjustments

Generate

NoOokowd =

Step 1: Calculate Bounding Box

Choose an island

Step 1: Calculate Bounding Box

I ..9..‘,—'
K. &

1 TR 'rl'.‘\’rx’;\‘.‘; 5 "(- :'
...‘ D BEEnOE] u- ,L..

Create a random box, within size and aspect ratio
constraints.

Step 2: Split Into Regions

e Recursively divide up the space.

e Currently using random axis aligned
binary splits.

e Stop splitting regions when they will
become too small. (or meet other criteria)

Splitting Regions Example

3

o
«ig

iyl
E
”

%

¥

3

5

.

R

%

¥

R

¥
-

A S N N N N S R RN
»
»

e

b S R

Recursive Splitting: Depth 1

Splitting Regions Example

050 A ey s v ol

+ 4

Recursive Splitting: Depth 2

Example

Regions

itting

Spl

Depth 3

Recursive Splitting

Splitting Regions Example

Recursive Splitting: Depth 4...

Splitting Regions Example

...and so on. Stop splitting when regions are too small,
etc.

Splitting Approaches

There are different ways to approach
splitting:

e Split along a random axis.

e Always split the shorter axis.

e Always split the longer axis.

e Hybrid approaches.

Splitting Approaches

Split along a random axis

Splitting Approaches

Split along the shortest axis

Splitting Approaches

. .’ ,‘ % T3 }
) L) |
| |
.

-

/y/

; -
k

e "~

Vnna S vy 5 ﬁ
) T
| gp = £4

aANR

1 |
ety | |
mE

Always split the longest axis

Splitting Approaches

Weighted selection of the last three

Splitting Approaches

Weighted selection and early termination

Step 3: Skim Perimeter Regions

I N
e Don't want every dungeon to be a
rectangle.

e Remove a random percentage of
perimeter regions.

e Deal with floating regions later.

10NS

ter Reg

iIme

Skim Peri

Step 3

(Perimeter Skimming Example)

Step 4: Place Connections
13 |

e Track possible connections with each split

e This helps to make a graph that a
computer can easily traverse.

e Currently randomly traversing the graph
and inserting travel connections along the
way.

Example Connection Graph

Each region is a node

Example Connection Graph

The Connection Information

Example Connection Graph
I D ——

71 N7
LDQLVZ’AiD\&\
AR N 3 2

I) .

The Connection Graph

Example Connection Graph

\
-t
T T H

§5 ad b ——— e

Random traversal to place connections

Example Connection Graph

\
-t
T T H

§5 ad b ——— e

Delete unvisited regions

Example Connection Graph

Place random connection types

Step 5: Assign Region Types

e The region type specifies how the region
will be generated.

e Example region types:
o Treasure room

Boss room

Entrance room

Hub region

Trap region

etc.

O O O O O

Step 5: Assign Region Types

1
e \We use a variety of methods to assign
region types

e \We also assign them in their order of
importance.

Example Region Assignment

Rules
Y

= \ | Entrance r m

b3

Room =

Place the boss treasure room in a terminal region, a far
distance away from the entrance.

Example Region Assignment

Rules
Y

/ \ Entrance

Boss —FRoom TR e T | i .
Treasure e R SERE
Room ~

Place the boss room near the treasure room so that you
must travel through the region

Example Region Assignment

Rules
Y

/ \ Entrance

b\

Boss __—Room T = e i
TreasuM ““““““ 3 B s \ —— R
Room - Trap

Room

Assign trap rooms to terminal regions with ceiling
connections.

Example Region Assignment
Rules

SR C R
~ Room

: a B ;
Room ~ s |

Boss

Treasure/ L

Room

(More example region assignments)

Step 6: Make Adjustments

e Adjust some of the connections to better
match their region types.

e For example:

o Place empty connections between adjacent boss
rooms.

o Place trap doors with trap regions.

o Place doors on boss treasure regions.

Step 6: Make Adjustments

e Adjust region types if necessary.

e Make any other corrections that might be
necessary.

Step 7: Generate

1. Generate the walls / connections

2. Generate the regions

3. Create the entrance tunnel if necessary

4. Apply random damage to blocks

Region Generation
1 |

e \We do the following here:
o Background pattern generation
o Object placement
o Platform placement

e Manage the complexity of this by dividing

into sub-regions.
o This is very similar to the region splitting.
o Also similar to shape grammars

Sub-Region Example

R SR SRR IR R SIS Y

Each box on the wall is a sub-region

Sub-Region Example

"5‘4‘:‘ ‘h& ﬂ ~'¢:‘— I ﬂ W}"“"? Ll ol a z"" N b

Object placement was based on sub-regions

Sub-Region Example

o] = ¥ 4 \§
3 "L[

Platform placement as well

More Sub-Region Examples

313 L

HHHEHE.
189993883939881
R LR
EEEEEEEELEEEY

5

BN AVSVRIBIABE | [BdssEjudsddsuszass

d3394949334493981 33 ddd3993449939934931 I
AN 33 933d3399993993933 oy

Random Dungeon Damage

(Before Random Damage)

Random Dungeon Damage

e | [

o
|

" timpeee A

TAETFFETEFPFPreriiT

s

[

4

¥

5,\\\.%.\.\\\.”.:...\.!_ y

' L

G HR

WHFEEEEPPreeee]
m 5
¥ -
.o.:ih)
»~
_
” 2
3
-
>
[
o : - -
-
> -
/Ty
o
’
-
i

(After Random Damage)

Adding Variety
! |
A lot of variety can be achieved by:

e Adjusting parameters

e New types of region removal

e New types of region connection traversal

e Hierarchies of generation parameters

e and more!

Architecture Examples

itecture Examples

Arch

Architecture Examples

N

2:\, k.

x-
.

rchitecture Examples

“50/100
-'—"'"'.'_"*'

tecture Examples

Archi

Architecture Examples

= (“Too/100
—_

—3
Z,

g

Architecture Examples

.‘iﬁm&’:}?«, ﬂ ,{\mu‘, vl ‘ia’“

Enemy
Placement

Enemy Placement: Requirements
I D ——

The placement algorithm needs to:

e Support procedural environments, that can
be changed by the player.

e Support a wide range of enemy sizes.

e As fast as possible

Enemy Placement: Solution
1 |

e |t was the easiest to control the
experience by dynamically spawning most
of the enemies.

e The current system has a dynamically
changing goal danger level

e |t will add enemies until the goal danger
level is reached

Enemy Placement: Solution
1 |

e The types of enemies placed depends on
the situation the player is in. (in ruins,
flying, etc.)

e Enemies are also dynamically removed if
they aren't needed.

Enemy Placement: Solution

Randomly place in a zone surrounding the player's view

Enemy Placement: Solution

Try once a frame until the enemy is placed.

Enemy Placement: Solution
1 |

Similar for ground enemies:
e Choose a random point in the air

e Ray cast down to the ground

e [f the ray hits the ground, check if the
collision area is suitable

Lessons
Learned

Automated Testing = Important
I D —

o It's quite possible that players will see bugs that you
never will.

o Try to implement this as soon as it makes sense.

o Make sure you log your generation seed and other
parameters.

o Some errors are hard to detect.

Random Notes
Y

e Author control vs emergent results

e Can be hard to guarantee that a level will
be perfect.

o Gameplay can be designed to make the
experience more robust.

e Procedural / designer hybrids can work
really well.

Things to Remember
]

e Noise maps are really handy for organic
things

e Recursive subdivision is nice for
architecture

e Try to keep things simple and organized.
o The complexity grows really fast!

Contact Info
Y D e

Evan Hahn

Email: evan.hahn@snowedin.ca

Twitter: @ehahnda

Web: snowedin.ca

mailto:evan.hahn@snowedin.ca

Questions ?

