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Windforge

A 2D building block RPG, with 
a mostly procedural world.

A lot of the techniques used to 
generate the dungeons in 
Windforge were adapted from 
the generator in this talk



Generator Features
● Generates full 3D architecture and levels 

● Only a small set of simple meshes are needed

● Provides good control over the generated results

● Wide range of results are possible

● Simple object placement

● Large levels can be generated quickly
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List of Input Meshes
LeftEdge

Middle

RightEdge

TopEdge

TopLeftCorner

TopRightCorner

BottomEdge

BottomLeftCorner

BottomRightCorner

DetailedBoxMiddle1

ExtrudingBoxMiddle1

ExtrudingVentMiddle1

IntrudingBoxMiddle1

IntrudingBoxMiddle2



Why Use Grammars?
● They represent self-similarity well

● Architecture can often be decomposed in to 
abstract parts

● A lot of variety can be achieved by 
substituting different parts

● Easy to control random outcomes



Using Spacial Grammars
Spacial grammars work in a similar way to other 
grammars

[English Sentence] = [Simple Sentence] | [Compound 
Sentence]

[Simple Sentence] = [Declarative Sentence] | [Interrogative 
Sentence] | [Imperative Sentence] | [Conditional Sentence]

[Declarative Sentence] = [subject] [predicate]

[subject] = [simple subject] | [compound subject]

[simple subject] = [noun phrase] | [nominative personal 
pronoun]

etc.



Using Spacial Grammars
They use symbol substitution as well, but the 
symbols are associated with geometry.
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Generating with Spacial Grammars
For each region of space:

● Select a substitution rule (if any)
● Figure out how to divide up the space
● Divide region into the new regions

Generation will terminate when no more rules can 
be applied



Rule Selection
Common ways to select rules:

● Based on region type
● Based on region size or shape
● Randomly
● (and more)



Dividing Up Space
Can get more variety by dividing space differently:

● Random range of positions
● Divide along random axis
● Divide along largest axis
● Divide along smallest axis
● (and more)



Generating Stuff with 
Grammars Works 
Great…
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Generating Stuff with 
Grammars Works 
Great…

Unfortunately…

Grammars aren’t magic



Limitations to Using Spacial Grammars
Like language, blindly expanding grammar rules produces 
nonsense:

● The broken seat accumulates the thought.

● The few linen translates the curve.

● Why does the cork involve the abhorrent chance?

● How does the motionless land formulate the swim?



Limitations to Using Spacial Grammars
● Can generate bad results

● A lot of duplicate structure

● Decisions are made in isolation from other 
parts of the architecture

● Space doesn’t always divide up nicely

● Hard to do with general shapes



Limitations to Using Spacial Grammars
Solution:  Can generate bad results

● Strict rules can be used to limit bad results

● Results can be processed to correct 
problems



Limitations to Using Spacial Grammars
Solution:  A lot of duplicate structure

● Solved this by making macro-like functions 
to generate parts of the grammar

● Might be worthwhile exploring using the 
functions directly



Limitations to Using Spacial Grammars
Solution:  Decisions are made in isolation from 
other parts of the architecture

● Separated aspects of the level generation in 
to separate parts

● Some of the parts consider the level as a 
whole

(more details coming soon)



Limitations to Using Spacial Grammars
Solution:  Space doesn’t always divide up nicely

● Always have default rules to fall back on

● Test and iterate



Limitations to Using Spacial Grammars
Solution:  Hard to do with general shapes

● Avoiding the problem by always dividing into 
axis aligned boxes



Generator Overview
● The generation process does not purely 

use grammars

● The process to generate a levels is 
broken down into smaller steps

● This helps to keep things simple and to 
overcome some of the limitations of 
using a pure grammar



Generator Terminology
Region

● AABBs with a type associated with 
them

● Responsible for creating things like:
○ Building shape
○ Hallway sections
○ Rooms
○ Elevators and staircases
○ Etc.



Generator Terminology
Surface

● AABBs with a type associated with 
them

● Will generate meshes and portals
● Responsible for creating things like:

○ Walls
○ Floors
○ Windows
○ Doors
○ Etc.



Generator Overview
1. Divide up space in to regions

2. Select surfaces

3. Fix problems with region connections

4. Create surfaces

5. Place objects



Region Generation
● Divides 3D space in to smaller parts using a 

spatial grammar

● Each region will be an AABB

● All divisions will be axis aligned



Region Generation Example
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Generating Region Connection Info
● Need to track how regions are 

connected

● The connection info is updated 
each time a region is split

● Produces a graph structure that will 
be used to solve connection 
problems, and generate geometry



Generating Region Connection Info
This tracks:

● Connecting faces between regions

● Connecting edges between faces

● Connecting vertices between edges



Generating Region Connection Info



Connecting Surface Selection
● Initial base surface types will be selected 

for the connecting faces, edges, and 
vertices

● Surfaces selected based on a number of 
rules



Connecting Surface Selection
Selection rules based on:

● Connecting types
● Dimensions of connection
● Orientation of connection
● Whether surface can be traveled through

There will always be a fallback surface if all 
rules fail.



Connecting Surface Selection
● Solid walls between rooms
● Empty space between halls
● Wall with door between halls and rooms
● Wall with windows between exterior 

regions and halls/rooms
● Floor with hole and railings to connect 

hallways on the XY plane
● etc.



Sometimes problems occur with simple rules...



Solving Connection Problems
● Ensure better flow through the level by 

traversing over faces, and adding / tweaking 
connections

● Mostly want to add connections to fix disjoint 
regions



Common Problem Situation



Solving Connection Problems
● Specify how many travel connections regions 

should have and remove them as necessary

● Currently removing them in a weighted random 
fashion

● Only removing them if it won’t cause regions to 
become disjoint



Surface Generation
● Generated by dividing space with a grammar 

● Terminal surfaces create:
○ Mesh geometry 
○ Portals to connect regions
○ Physics collisions



Surface Generation
● Dividing up surfaces is a little bit more 

complicated than regions

● Typically want to generate different things for 
floors, ceilings, room specific walls, etc

● Surfaces are responsible for generating 
portals though



Surface Generation - Without Portals

Surface generation without portals is straightforward.
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Surface generation without portals is straightforward.



Surface Generation - With Portals

Portals make things a bit more complicated



Surface Generation - With Portals

Expand only the parts of the grammar that could contain a portal



Surface Generation - With Portals

Everything left will be safe to split up without ruining the connections



Surface Generation - With Portals

Each side can be generated in isolation now



Discussion
● Happy with the results so far

○ Versatile
○ Fast
○ Only requires simple meshes

● Biggest complaint: Authoring in plain 
text can be difficult



Discussion
● Generated levels aren’t as good as 

hand authored levels

● Lots of code

● Fairly easy to test parts in isolation

● Recommend automated testing



Questions?

Evan Hahn

Email:  evan.hahn@snowedin.ca

Twitter:  @ehahnda

Web:  snowedin.ca
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