
Grammar Techniques for Procedural
Architecture

Evan Hahn

Windforge

A 2D building block RPG, with
a mostly procedural world.

A lot of the techniques used to
generate the dungeons in
Windforge were adapted from
the generator in this talk

Generator Features
● Generates full 3D architecture and levels

● Only a small set of simple meshes are needed

● Provides good control over the generated results

● Wide range of results are possible

● Simple object placement

● Large levels can be generated quickly

Generation Results

Generation Results

Generation Results

Generation Results

Generation Results

Generation Results

Generation Results

Generation Results

List of Input Meshes
LeftEdge

Middle

RightEdge

TopEdge

TopLeftCorner

TopRightCorner

BottomEdge

BottomLeftCorner

BottomRightCorner

DetailedBoxMiddle1

ExtrudingBoxMiddle1

ExtrudingVentMiddle1

IntrudingBoxMiddle1

IntrudingBoxMiddle2

Why Use Grammars?
● They represent self-similarity well

● Architecture can often be decomposed in to
abstract parts

● A lot of variety can be achieved by
substituting different parts

● Easy to control random outcomes

Using Spacial Grammars
Spacial grammars work in a similar way to other
grammars

[English Sentence] = [Simple Sentence] | [Compound
Sentence]

[Simple Sentence] = [Declarative Sentence] | [Interrogative
Sentence] | [Imperative Sentence] | [Conditional Sentence]

[Declarative Sentence] = [subject] [predicate]

[subject] = [simple subject] | [compound subject]

[simple subject] = [noun phrase] | [nominative personal
pronoun]

etc.

Using Spacial Grammars
They use symbol substitution as well, but the
symbols are associated with geometry.

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Real Life Example

Generating with Spacial Grammars
For each region of space:

● Select a substitution rule (if any)
● Figure out how to divide up the space
● Divide region into the new regions

Generation will terminate when no more rules can
be applied

Rule Selection
Common ways to select rules:

● Based on region type
● Based on region size or shape
● Randomly
● (and more)

Dividing Up Space
Can get more variety by dividing space differently:

● Random range of positions
● Divide along random axis
● Divide along largest axis
● Divide along smallest axis
● (and more)

Generating Stuff with
Grammars Works
Great…

Generating Stuff with
Grammars Works
Great…

Unfortunately...

Generating Stuff with
Grammars Works
Great…

Unfortunately…

Grammars aren’t magic

Limitations to Using Spacial Grammars
Like language, blindly expanding grammar rules produces
nonsense:

● The broken seat accumulates the thought.

● The few linen translates the curve.

● Why does the cork involve the abhorrent chance?

● How does the motionless land formulate the swim?

Limitations to Using Spacial Grammars
● Can generate bad results

● A lot of duplicate structure

● Decisions are made in isolation from other
parts of the architecture

● Space doesn’t always divide up nicely

● Hard to do with general shapes

Limitations to Using Spacial Grammars
Solution: Can generate bad results

● Strict rules can be used to limit bad results

● Results can be processed to correct
problems

Limitations to Using Spacial Grammars
Solution: A lot of duplicate structure

● Solved this by making macro-like functions
to generate parts of the grammar

● Might be worthwhile exploring using the
functions directly

Limitations to Using Spacial Grammars
Solution: Decisions are made in isolation from
other parts of the architecture

● Separated aspects of the level generation in
to separate parts

● Some of the parts consider the level as a
whole

(more details coming soon)

Limitations to Using Spacial Grammars
Solution: Space doesn’t always divide up nicely

● Always have default rules to fall back on

● Test and iterate

Limitations to Using Spacial Grammars
Solution: Hard to do with general shapes

● Avoiding the problem by always dividing into
axis aligned boxes

Generator Overview
● The generation process does not purely

use grammars

● The process to generate a levels is
broken down into smaller steps

● This helps to keep things simple and to
overcome some of the limitations of
using a pure grammar

Generator Terminology
Region

● AABBs with a type associated with
them

● Responsible for creating things like:
○ Building shape
○ Hallway sections
○ Rooms
○ Elevators and staircases
○ Etc.

Generator Terminology
Surface

● AABBs with a type associated with
them

● Will generate meshes and portals
● Responsible for creating things like:

○ Walls
○ Floors
○ Windows
○ Doors
○ Etc.

Generator Overview
1. Divide up space in to regions

2. Select surfaces

3. Fix problems with region connections

4. Create surfaces

5. Place objects

Region Generation
● Divides 3D space in to smaller parts using a

spatial grammar

● Each region will be an AABB

● All divisions will be axis aligned

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Region Generation Example

Generating Region Connection Info
● Need to track how regions are

connected

● The connection info is updated
each time a region is split

● Produces a graph structure that will
be used to solve connection
problems, and generate geometry

Generating Region Connection Info
This tracks:

● Connecting faces between regions

● Connecting edges between faces

● Connecting vertices between edges

Generating Region Connection Info

Connecting Surface Selection
● Initial base surface types will be selected

for the connecting faces, edges, and
vertices

● Surfaces selected based on a number of
rules

Connecting Surface Selection
Selection rules based on:

● Connecting types
● Dimensions of connection
● Orientation of connection
● Whether surface can be traveled through

There will always be a fallback surface if all
rules fail.

Connecting Surface Selection
● Solid walls between rooms
● Empty space between halls
● Wall with door between halls and rooms
● Wall with windows between exterior

regions and halls/rooms
● Floor with hole and railings to connect

hallways on the XY plane
● etc.

Sometimes problems occur with simple rules...

Solving Connection Problems
● Ensure better flow through the level by

traversing over faces, and adding / tweaking
connections

● Mostly want to add connections to fix disjoint
regions

Common Problem Situation

Solving Connection Problems
● Specify how many travel connections regions

should have and remove them as necessary

● Currently removing them in a weighted random
fashion

● Only removing them if it won’t cause regions to
become disjoint

Surface Generation
● Generated by dividing space with a grammar

● Terminal surfaces create:
○ Mesh geometry
○ Portals to connect regions
○ Physics collisions

Surface Generation
● Dividing up surfaces is a little bit more

complicated than regions

● Typically want to generate different things for
floors, ceilings, room specific walls, etc

● Surfaces are responsible for generating
portals though

Surface Generation - Without Portals

Surface generation without portals is straightforward.

Surface Generation - Without Portals

Surface generation without portals is straightforward.

Surface Generation - With Portals

Portals make things a bit more complicated

Surface Generation - With Portals

Expand only the parts of the grammar that could contain a portal

Surface Generation - With Portals

Everything left will be safe to split up without ruining the connections

Surface Generation - With Portals

Each side can be generated in isolation now

Discussion
● Happy with the results so far

○ Versatile
○ Fast
○ Only requires simple meshes

● Biggest complaint: Authoring in plain
text can be difficult

Discussion
● Generated levels aren’t as good as

hand authored levels

● Lots of code

● Fairly easy to test parts in isolation

● Recommend automated testing

Questions?

Evan Hahn

Email: evan.hahn@snowedin.ca

Twitter: @ehahnda

Web: snowedin.ca

mailto:evan.hahn@snowedin.ca

