
Frictionless 
Debug UI in C++



What I Want to Talk About
● Introduce Dear IMGui

● Show some tricks I’m using in some tools I’m experimenting with



Friction?
The amount of busy work needed 
to get something done, that isn’t 
directly related to what you want 
to do.



Example:
You want add a tweakable parameter to an 
algorithm you’re working on. 

But doing this may also require:

● Updating the header
● Updating comments / documentation
● Updating UI
● Updating serialization
● Waiting for things to compile and load
● etc.



Why Care About Friction?
● Takes time

● Reduces momention and train of thought

● Makes people more likely to make “lazy” choices

● Takes the joy out of development



How to Reduce Friction
● Evaluate your processes and coding conventions

● Defer the work until you know it’s needed

● Automation

● Try to keep compile times and loading times low

● Make it so you can tweak things without re-compiling and loading

● Keep duplication to a minimum

● etc.



Debug and Tool UI
Tools and debug UI can make parts of the 
development process way easier

Unfortunately, it also increases the amount of stuff 
you need to update and maintain 

Usually, we don’t care as much about how it looks 
as long as it’s functional.



What is an Immediate Mode UI
● Similar to OpenGL immediate mode

○ (Note: Dear ImGui doesn’t use immediate mode rendering)

● Basically with IM GUIs the controlling code also creates the UI.

● There is very little state to maintain with and IM Gui.  

● Unity has their own version of an Immediate Mode Gui.



Retained vs Immediate Mode UI
Retained

● UI layout is separate from the logic 
controlling it.

● Tool assisted layouts are easier and more 
common.

● Easier to do advanced visuals like 
animations.

● Adding to the UI often involves creating 
separate UI elements and extra “glue code” 

● More likely for UI and logic to get out of 
sync.

Immediate Mode

● UI layout is generated from the controlling 
logic.

● Layouts are more automatic, but harder to 
customize.

● Advanced visuals are more difficult.

● Less extra code and data is needed to make 
the UI work.

● Less likely for the UI to get out of sync.



Dear IMGui
An easy to use immediate mode GUI 
library for C++.

● Minimal dependencies

● Can be integrated into existing 
engines without too much 
trouble

● Should work with any graphics 
library.



Example Usage



Getting Set Up with ImGUI
To make Dear IMGui work you need to:

● Pass input and settings to Dear ImGUI

● Setup a render callback to render the draw data



Getting Set Up with ImGUI
I’m using SFML (Simple and Fast Multimedia Library) for my tools.

I referred to this link to help get set up:

https://eliasdaler.github.io/using-imgui-with-sfml-pt1/

This link provides some binding code to help get set up:

https://github.com/eliasdaler/imgui-sfml

https://eliasdaler.github.io/using-imgui-with-sfml-pt1/
https://github.com/eliasdaler/imgui-sfml


Tricks for Learning Dear ImGUI features
There’s a handy function called:  
ImGui::ShowTestWindow();

Browsing through this window and 
code is usually enough to figure out 
new features, and is often faster than 
Google



Examples from My Tools
Drag and drop scene hierarchy:



Examples from My Tools
Displaying Images:



Examples from My Tools
Displaying Graphs:



Examples from My Tools
Macro generated UI for tweaking properties:



Code Generation using Macros
● Even with IMGui there is still extra code to maintain when adding new 

properties.

● Ideally I’d like the UI to update automatically when I change properties.

● I’m using a macro trick to generate the UI automatically.



Cool Macro Features I Didn’t Learn in School
Turning macro parameters into strings using the stringizing operator (#)



Cool Macro Features I Didn’t Learn in School
Concatenating / merging arguments using the token-pasting operator  (##)



Cool Macro Features I Didn’t Learn in School
You can undefine / redefine macros:

#ifdef E_PROP

#error E_PROP is already defined

#endif

#define E_PROP(name, type, luaType, defaultValue, minValue, maxValue, updateFlags) type name 

= defaultValue;

//Do stuff

#undef E_PROP



Generating Code Based on Lists of Stuff
Using a combination of inline files and macro definitions you can generate 
code based on lists of macro calls.

This can be used to:

● Define enums and string conversion functions
● Generate UI to display and tweak properties
● Generate serialization code for properties
● Generate script binding code
● etc.



Generating Code Based on Lists of Stuff
Define an inline file with macro calls (This example defines an enum)



Generating Code Based on Lists of Stuff
Define what the macro should do then include the inline file:



Generating Code Based on Lists of Stuff
Define what the macro should do then include the inline file:



Generating Code Based on Lists of Stuff
Define what the macro should do then include the inline file:



Macro Based UI and Serialization Generation

(let's look at the code for this)



Links
Dear IMGui Github page:

https://github.com/ocornut/imgui

Using Dear ImGui with SFML

https://eliasdaler.github.io/using-imgui-with-sfml-pt1/

https://github.com/ocornut/imgui
https://eliasdaler.github.io/using-imgui-with-sfml-pt1/

